

Presses électriques ElectricPress, ServoPress et TorquePress SCHMIDT®

ElectricPress **SCHMIDT**®

Une nouvelle approche dans la technologie d'assemblage

Utiliser un axe électrique en lieu et place du vérin pneumatique ou hydropneumatique constitue une grande avancée dans les technologies d'assemblage. Pour cette nouvelle génération de presses, SCHMIDT Technology a combiné le savoir-faire reconnu de ses mécaniques robustes et précises avec les dernières technologies de motoréducteurs pour développer des presses d'assemblage répondant aux applications de la production industrielle. La haute efficience énergétique des presses électriques ne doit pas être le seul critère de choix pour ces entraînements. L'optimisation individuelle du process, les coûts d'infrastructure et de qualité de l'air comprimé sont également à prendre en compte dans le choix.

Le succès de vos produits dépend en grande partie d'un process d'assemblage fiable et surtout économique:

- fiable grâce au retour d'informations fiables sur la qualité de l'assemblage
- économique grâce à la réduction des coûts opérationnels et l'utilisation d'un entraînement par électromoteur.

Ces deux critères sont réunis dans le nouveau système de presse ElectricPress SCHMIDT® avec une force maximale de 20 kN et sa commande PressControl 75 pour ElectricPress 43 et 45 ou PressControl SCHMIDT® 700x pour les systèmes à surveillance

- Surveillance du process en temps réel
- Grande efficacité énergique
- Intégration facile
- Profils de déplacement reproductibles
- Entraînement purement électrique
- Réglable en hauteur

force/course. Ces composants ont fait leurs preuves lors d'utilisations rudes dans des systèmes automatisés et garantissent précisément ce succès.

L'ElectricPress SCHMIDT® possède de nombreux avantages :

- Paramétrage simple qui minimise le temps de mise en route
- Nombreux profils de déplacement stockés pour des changements rapides de production
- Accroissement de la flexibilité
- Précision de positionnement permettant une réduction des coût d'outillages et d'usure
- Optimisation du process et élimination de l'effet stick-slip dans les assemblages (en comparaison avec les vérins pneumatiques), particulièrement à faible vitesse
- Fonctionnement silencieux réduisant la fatigue et le stress de l'opérateur

Les hautes exigences de qualité attendues sont aussi mises à l'épreuve sur le banc d'essai. Pour déterminer la durée de vie

typique de 2 x 107 cycles de la presse, des exigences minimales ont été mises en place. Les composants mécaniques, électriques et moteurs ainsi que comportement thermique de l'ensemble du système, ont réussi le

test d'endurance avec succès.

ElectricPress SCHMIDT® 43/45 avec PressControl 75

Poste de travail manuel **ElectricPress SCHMIDT®** sur support de presse PU20

La commande **PressControl SCHMIDT®** 75, permet de paramétrer facilement le système pour un changement de production et une mise en route rapide de la presse. Jusqu'à 24 blocs de données peuvent être sauvegardés.

Cette combinaison peut être utilisée aussi bien pour des postes de travail manuels que pour l'automatisation.

ElectricPress SCHMIDT® 43 automation

Caractéristiques

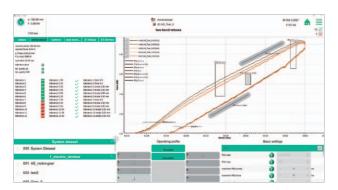
- Valeurs digitales de position, vitesse, accélération et décélération
- Jusqu'à 14 séquences de déplacement ajustables et contrôlables par tout système PLC standard
- Réguler sur la position exacte
- Positionner sur "force" (au travers du courant absorbé par le motoréducteur), pour des fonctions comme :
 - Positionnement sur «effort final»
 - Positionnement sur "course" mais interruption si effort excessif
- Palpage de la pièce

ElectricPress SCHMIDT® 343/345 avec PressControl 700

En combinaison avec la commande PressControl SCHMIDT® 700 ou 7000, l'ElectricPress SCHMIDT® devient un système de presse avec contrôle force/course. Le régulation continue de la force offre un maximum de précision et permet de réaliser des profils de déplacement individuels et complexes lors d'opérations d'assemblage.

En plus d'une régulation sur course, l'ElectricPress SCHMIDT® dispose également d'une véritable régulation sur force (la force est la variable de régulation).

- Les valeurs de consigne sont vite atteintes
- Les valeurs ciblées ne sont pas dépassées
- Le positionnement est précis autour du 1/100 mm, même par de fortes variations de l'effort d'assemblage
- Adaptation optimisée à toutes vos applications
- Le système utilise des valeurs d'accélération optimisées par défaut (des entrées incorrectes sont impossibles)
- Les temps de cycles peuvent être optimisés grâce aux représentations graphiques force / temps [F / t], course / temps [s / t]. Le comportement de la régulation peut être analysé.



En combinaison avec les systèmes de sécurité certifiés CE de type : bimanuelles, barrières immatérielles et SmartGate SCHMIDT®.

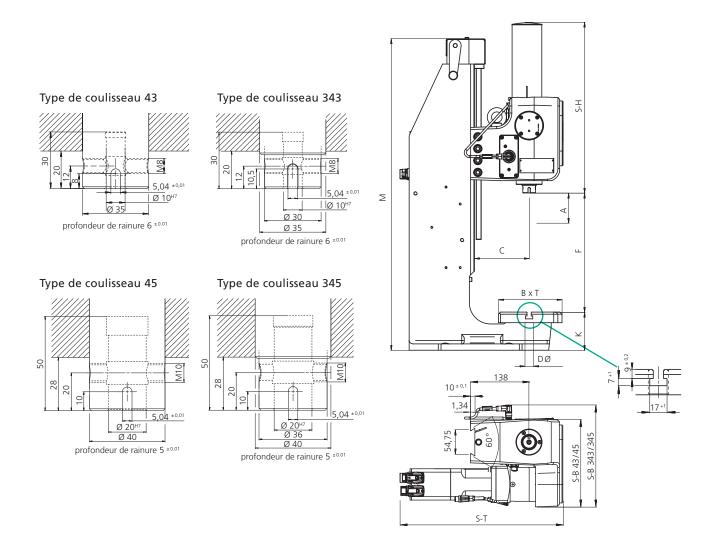
Automatisation

Les ElectricPress SCHMIDT® 343, 345 et 347 avec commande PressControl SCHMIDT® 7000 pour l'intégration dans les systèmes d'automation.

Visualisation du process

ElectricPress SCHMIDT® 347 automation

ElectricPress SCHMIDT®


43/343/45/345

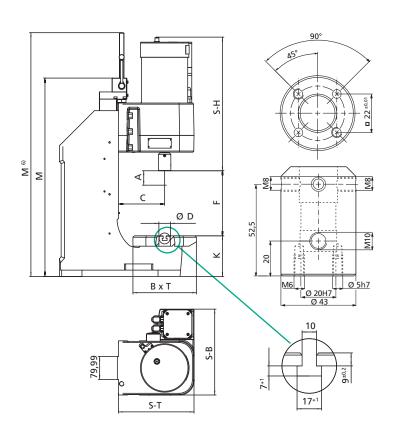
Type de presse			43	343	45	345
Force F max. ¹⁾		kN	4	4	10	10
Force F en permanence 2)		kN	2,5	2,5	6	6
Course du coulisseau	Α	mm	100	100	150	150
Vitesse maxi		mm/s	200	200	200	200
Résolution commande d'entraînement		μm	< 1	< 1	< 1	< 1
Résolution acquisition des données de process						
- Course		μm/inc		1,69		2,4
- Force		N/inc		1,25		3,0
Profondeur du col de cygne	С	mm	129	129	129	129
Niveau sonore		dB A	60	60	60	60
Alimentation						
- Moteur			208 - 240 V AC ±10 %	208 - 240 V AC ±10 %	208 – 240 V AC ±10 %	208 – 240 V AC ±10 %
- Electronique de Commande			24 V DC / 2 A	24 V DC / 2 A	24 V DC / 2 A	24 V DC / 2 A
Hauteur de travail bâti 7-4203)	F	100.100	62 – 420	62 – 420	50 – 360	50 – 360
Hauteur de travail bâti 7-6003)	Г	mm	100 – 610	100 – 610		
S-H x S-B x S-T		mm	402 x 207 x 385	402 x 240 x 385	530 x 245 x 410	530 x 275 x 410
Poids tête de presse		kg	35	35	59	59
PRC Gateway, quantité E/S				16 entrées / 16 sorties		16 entrées / 16 sorties

Aperçu des bâtis	Type de presse	Hauteur de bâti M (mm)	Dimension table B x T (mm)	Alésage table D Ø (mm)	Hauteur de table K (mm)	Encombrement (mm)
N° 7-420	43, 343, 45, 345	740	180 x 150	20H7	90	220 x 362
N° 7-600	43, 343	960	180 x 280	20H7	110	220 x 465

¹⁾ Charge maxim ale limitée en temps

 $^{^{3)}}$ Valeurs typiques, celles-ci peuvent varier de ± 3 mm en raison des tolérances sur la fonderie et/ou finition

²⁾ Force nominale en fonctionnement continu

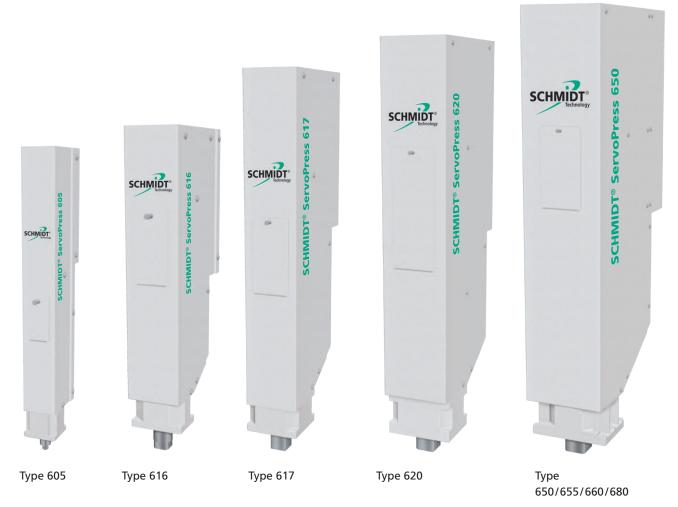


ElectricPress SCHMIDT® 347

Type de presse			347
Force F max. ¹⁾		kN	20
Force F en permanence 2)		kN	13
Course du coulisseau	А	mm	150
Vitesse maxi		mm/s	100
Résolution commande d'entraînement	Е	μm	< 1
Résolution acquisition des données de process - Course - Force		μm/inc N/inc	2,30 6,25
Profondeur du col de cygne	С	mm	160
Niveau sonore		dB A	66
Alimentation - Moteur - Electronique de Commande			208 – 240 V AC ±10 % 1,3 kW 24 V DC / 2 A
Hauteur de travail bâti 35 ⁴⁾ bâti 35-500 ⁴⁾ bâti 35-600 ⁴⁾	F	mm	18 – 225 80 – 495 196 – 612
S-H x S-B x S-T		mm	464 x 298 x 261
Poids tête de presse		kg	66
PRC Gateway, quantité E/S		mm	16 entrées / 16 sorties

Aperçu des bâtis	Type de presse	Hauteur de bâti M (mm)	Dimension table B x T (mm)	Alésage table D (Ø mm)	Hauteur de table K (mm)	Encombrement B x L (mm)	Poids (kg)
N° 35	347	688 / (846) ⁶⁾	300 x 220	40H7	141	300 x 475	99
N° 35-500	347	983 / (1371) 6)	300 x 220	40H7	166	300 x 560	213
N° 35-600	347	1100 / (1488) ⁶⁾	300 x 220	40H7	166	300 x 590	242

¹⁾ Charge maxim ale limitée en temps

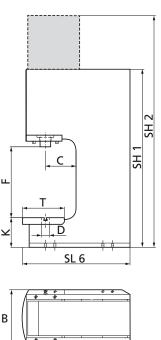

²⁾ Force nominale en fonctionnement continu

 $^{^{3)}}$ Valeurs typiques, celles-ci peuvent varier de ± 3 mm en raison des tolérances sur la fonderie et/ou finition

⁶⁾ Incl. taraud réglage en hauteur

ServoPress SCHMIDT®

Forces de 1 kN à 250 kN



Un assemblage économique de haute qualité garantie le succès d'un produit sur le marché. L'objectif est d'assembler des composants bon marché aux tolérances variables pour en faire des ensembles de haute précision. Les presses électriques avec entraînement par vis à billes/rouleaux — servopresse — sont particulièrement adaptées pour de tels assemblages. Les modules ServoPress se distinguent par une dynamique élevée sur toute la plage de fonctionnement en force et en course ainsi que par une excellente répétabilité.

Les systèmes composés de modules ServoPress associés aux commandes **PressControl 700** et **7000** sont la solution idéale aux exigences les plus complexes. En postes de travail individuels sécurisés et certifiés CE de type sous forme de composants pour les lignes de production automatisées.

Les modules **ServoPress SCHMIDT**® sont certifiés CE de type avec les systèmes de sécurité suivants **SmartGate**, **SmartGuard** et barrières immatérielles.

Les ServoPresses disposent en outre d'un système de lubrification automatique des broches intégré et sont protégées par un accouplement de surcharge à partir du type 616.

ServoPress SCHMIDT®

Modules pour de larges domaines d'applications

La construction mécanique solide et unique en son genre de la ServoPress / TorquePress SCHMIDT® permet d'atteindre des résultats d'assemblage de grande précision, même dans un environnement industriel rude.

Test sur banc d'essai

Avant de procéder à la fabrication en série, les nouveaux modules ont été soumis à des tests d'endurance sous conditions extrêmes. Nombre de qualités utilisables pour vos applications résultent de ces tests.

Système de mesure absolue et directe de la course

- Répétabilité précise grâce à la haute résolution du système
- Compensation des compressions mécaniques à pleine charge
- Compensation des erreurs de pas de la broche
- Elimination des variations de longueurs des matériaux

Modules résistants à pleine charge

- avec maintien de la force nominale en permanence
- sur la toute course du coulisseau
- avec des temps de cycle courts
- un guidage précis avec jeu minime du coulisseau
- une force maxi selon le mode S3

Autoprotection du module

- lubrification entièrement automatique de la broche
- protection par embrayage mécanique en cas de surcharges ou de «crash» de la TorquePress
- TorquePress 560 avec refroidissement actif avec surveillance thermique des systèmes mécaniques et électronique; Torque-Press 520 avec refroidissement par convection
- limitation du courant en cas de dépassement des charges admissibles
- La presse est protégée contre les erreurs de manipulation

Entretien facile et réduit

- remplacement simplifié du module grâce au positionnement haute précision du coulisseaux
- reconnaissance automatiquement du module
- les programmes existants ne sont pas modifiés

Sécurité intégrée dans le système à barrières immatérielles ou carter de protection SmartGuard avec certification CE de type.

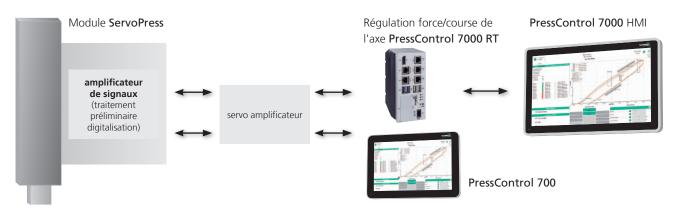
Tous ces éléments vous garantiront :

- √un rendement maximum
- √une disponibilité maximum du système
- √ une grande sécurisation de votre production

Modules

Avec des forces allant de 15 N à 250 kN

Type de presse		605		616	6	17	620	650	655		660	680
Force F max	kN	1		5		4	35	75	110		160	250
Force F en permanence	kN	0,5		3		,5	20	50	80		110	200
Course du coulisseau	mm	150		200	30	00	400	500	500		350	350
Résol. commande d'entraînement	μm	0,1		0,1	0,	,1	0,1	0,1	0,1		0,1	0,1
Vitesse du coulisseau	mm/s	0 – 300		0 – 200	0 -	200	0 – 200	0 – 200	0 – 10	0 0	- 100	0 – 50
Résol. acquisition des don- nées de process – force	N/inc	0,3		1,5	3,	75	10	24	32		48	75
Résol. acquisition des don- nées de process – course	μm/inc	2,2		3,2	4	,6	6,1	7,6	7,6		5,4	5,4
Protection contre les surcharges		-					,	Accouplement				
Entraînement				/is à bille					à rouleaux			
Poids env.	kg	11,6		25		4	113	225	225		283	283
Poids de l'outil (max.)	kg	5	0	15	2		50	100	100		100	100
Alimentation (50 – 60 Hz)	V AC	208 – 24		208 – 24 199 / 124			400 – 480, 3~ 1077 / 190	400 – 480, 3 1250 / 243			- 480, 3~ 4 9 / 249	.00 – 480, 3~ 1249 / 249
Dimensions H / B / T	mm	636 / 89 / 1	155	258	3		/ 384	/ 561	/ 56		552	/ 552
Coulisseau taraudage	mm	6 ^{H7}		10 ^{H7}) ^{H7}	20 ^{H7}	20 ^{H7}	20 ^{H7}		20 ^{H7}	20 ^{H7}
Dimension du coulisseau	mm	Ø 25		Ø 40		42	□ 55	□ 65	□ 65	5 5	Ø 90	Ø 90
Bâti					605	616	617	620	650	655	660	680
Profondeur du col de cygne			С	mm	130	130		160	160	160	160	160
Alésage table			D	mm	ø 20 ^{H7}	ø 20 [⊦]	¹⁷ ø 40 ^{H7}	ø 40 ^{H7}	ø 40 ^{H7}	ø 40 ^{H7}	ø 40 ^{H7}	ø 40 ^{H7}
Hauteur de travail (ServoPres	s 680 bâti	en arcade)	F	mm	246	300		518	612	507	500	500
Table hauteur			K	mm	93	113		155	190	220	220	178
Dimension table			ВхТ	mm			75 250 x 20		370 x 230			370 x 230
Profondeur de montage (ServoP		,	SL 6	mm	365	405	460	563	636	725	761	614
Hauteur de bâti (ServoPress 6	580 bâti er	n arcade)	SH 1	mm	510	630		1080	1050	1050	1097	942
Hauteur			SH 2	mm	1015	1062		1810	2012	2032	2036	2062
Poids				kg	45	101	166	334	553	757	805	867
Boîtier												
			A	mm	574	535		957	1130	1130	1249	1249
			В	mm	155	252		384	555	555	552	552
			C	mm	62 89	119 124		210 190	260 244	260 244	200	200
Conneyion des sâbles			D	mm	09	124	144	190	244	244	249	249
Connexion des câbles			_		105	407	227	256	022	022	270	270
			E F	mm	105 ~60	497 ~60		256 ~60	823 ~60	823 ~60	370 ~60	370 ~60
Duide			Г	mm	~60	~60	~60	~60	~60	~60	~60	~60
Bride			G	mm	62	63.5	92	120	120	120	_	_
			Н	mm	75	75	130	140	150	150	230	230
			J	mm 1)	60	88	120	160	210	210	130/210	
			ı	mm	75	109	134	180	235	235	230	230
			K	mm 1)	60	63	115	120	130	130	130	130
			L	mm 1)	40	59.4		-	-	-	-	-
			М	ø mm	45 ^{h6}	45 ^{h6}		90 ^{h6}	100 ^{h6}	100 ^{h6}	120 ^{h6}	120 ^{h6}
			N	mm	10,5	15	19	32	28	28	-	-
			0	mm	3,5	3,5	4	5	5	5	8	8
			AA	ø mm	5,5	6,3		10,3	12,1	12,1	-	-
			ВВ	ø mm	M5	M6		M12	M14	M14	M14	M14
			CC	mm	130	239		344	542	542	482	482
Coulisseau												
Dimensions ext. du coulissea	u		Р	mm	ø 25	ø 40	42 x 42	55 x 55	65 x 65	65 x 65	ø 90	ø 90
Alésage coulisseau			Q	ø mm	6H7	10 ^{H7}	20 ^{H7}	20 ^{H7}	20 ^{H7}	20 ^{H7}	20 ^{H7}	20 ^{H7}
			R	mm	18	30	50	50	50	50	50	50
			S		M5	M8		M10	M10	M10	M10	M10
			T	mm	8	10	20	20	20	20	20	20
					4.0	50	60	60	60	60	67	114
Pos. supérieure de travail			U	mm	40							
Pos. sup. du coulisseau			V	mm	19,5	27,8	38,1	44,6	55	55	67	114
Pos. sup. du coulisseau Pour trou de goupille			V W	mm mm ²⁾		27,8 22	38,1 32	44,6 40	55 40	55 40	67 40	114 40
Pos. sup. du coulisseau			V W X	mm	19,5 	27,8 22 22	38,1 32 32	44,6 40 40	55 40 40	55 40 40	67 40 40	114 40 40
Pos. sup. du coulisseau Pour trou de goupille			V W	mm mm ²⁾	19,5	27,8 22	38,1 32 32	44,6 40	55 40	55 40	67 40	114 40



ServoPress/TorquePress SCHMIDT®

Supériorité dans la régulation

Afin d'obtenir des assemblages économiques et de qualité, il ne suffit pas de combiner une broche avec une servocommande. Une régulation continue de la presse présentant rapidité et précision, constitue la clé d'un assemblage intelligent.

Ceci exige l'intégration d'un système composé d'une unité d'entraînement, d'un système de mesure de process et d'une unité de commande. L'architecture du système de la **ServoPress/TorquePress SCHMIDT®** tient compte de toutes ces exigences.

Les ServoPress/TorquePress SCHMIDT® fonctionnent avec un véritable régulateur de force, contrairement aux systèmes simples de commutation utilisés par d'autres fabricants.

Concrètement, cela signifie que

- Les valeurs de consigne sont vite atteintes
- Les valeurs ciblées ne sont pas dépassées
- Le positionnement est précis dans la plage du 1/100 mm, même avec de fortes variations de la force d'assemblage
- Le système dispose d'une haute précision de régulation de la force
- Les paramètres de régulation peuvent être définis.
- adaptation optimisée à votre application
- aucune programmation requise
- le système utilise des valeurs d'accélération optimisées par défaut (les entrées incorrectes sont évitées)
- Les durées des process sont optimisées grâce a la représentation graphique force/course, force/temps [F/t], course/temps [s/t] permettant d'analyser le comportement de la régulation. L'unique représentation classique force/course [F/s] d'axes électriques traditionnels n'est pas comparable aux options conviviales d'acquisition et de visualisation offertes par la Servo-Press/TorquePress SCHMIDT®

Objectif 0.80 0.60 0.60 0.40 0.20 0.20 0.20 0.20 0.00 Temps (t)

Ces propriétés ne sont rendues possibles qu'en combinant les fonctions suivantes:

- Technique de mesure intégrée (fréquence de balayage 2000 Hz)
 - mesure de course sans jeu, mesure de force sans influence d'efforts latéraux
- Amplification des signaux de process sur le module ServoPress / TorquePress SCHMIDT®
 - insensible aux perturbations électromagnétiques (CEM)
- La régulation est réalisée par le PressControl 700 SCHMIDT® ou PressControl 7000 (système basé sur PC), c.-à.-d. le servoamplificateur et le moteur obtiennent leurs valeurs par défaut par la commande
 - algorithme de régulation PLC optimisé
 - force [F], course [s] ou d'autres informations externes sont traitées simultanément lors du process
 - l'information de référence peut être définie librement.
- Traitement rapide des signaux par PLC basé sur logiciel avec commande numérique intégrée

TorquePress **SCHMIDT**®

Compacte, avec un moteur torque à haut rendement

La série TorquePress SCHMIDT® se distingue de la série Servo-Press au travers d'un certain nombre de caractéristiques. Parmi celles-ci, on trouve les moteurs torque disposant d'un couple important et permettant d'obtenir des forces élevées sans avoir à recourir à des démultiplications mécaniques.

Sur toute la plage d'effort; le niveau de bruit reste remarquablement faible en comparaison avec les autres presses électriques. L'entraînement direct de la broche permet d'atteindre des rendements très élevés. De par sa conception compacte, la **Torque-Press** permet de réduire la taille des installations.

Les **TorquePress SCHMIDT®** sont certifiées CE de type en combinaison avec les systèmes de sécurité **SmartGate**, **SmartGuard** et **barrières immatérielles** ainsi que la **commande bimanuelle** particulièrement économique.

TorquePress 560

La qualité mécanique sans compromist

La construction mécanique solide et unique en son genre de la **TorquePress SCHMIDT**® permet d'atteindre des résultats d'assemblage de grande précision, même dans un environnement industriel rude.

Avant de procéder à la fabrication en série, les nouveaux modules ont été soumis à des tests d'endurance sous conditions extrêmes. Nombre de qualités utilisables pour vos applications résultent de ces tests.

- 20 millions de cycles sous charge, à la force nominale, à la vitesse maximale, sur toute la course de travail et en appliquant une force latérale
- Temps de cycle d'environ 2 secondes

Système de mesure absolue et directe de la course

- Répétabilité précise grâce à la haute résolution du système
- Compensation des compressions mécaniques à pleine charge
- Compensation des erreurs de pas de la broche
- Elimination des variations de longueurs des matériaux

Modules résistants à pleine charge

- avec maintien de la force nominale en permanence
- sur la toute course du coulisseau
- avec des temps de cycle courts
- un guidage précis avec jeu minime du coulisseau
- une force maxi selon le mode S3

Autoprotection des machines

- Lubrification de broche entièrement automatique
- Embrayage mécanique comme protection contre les surcharges pour la ServoPress en cas de collision
- Refroidissement actif avec surveillance thermique de la mécanique et de l'électronique
- Limitation de courant lorsque la consommation de charge autorisée est dépassée
- La destruction due à une utilisation incorrecte est exclue

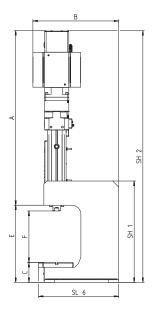
Entretien facile et réduit

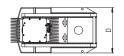
- remplacement simplifié du module grâce au positionnement haute précision du coulisseaux
- reconnaissance automatiquement du module
- les programmes existants ne sont pas modifiés

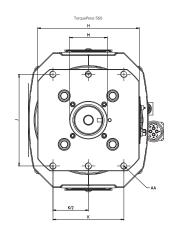
Sécurité intégrée dans le système à barrières immatérielles, SmartGate ou carter de protection SmartGuard avec certification CE de type.

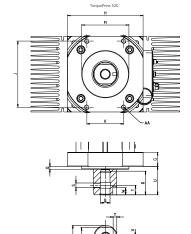
TorquePress 560 dispose d'une gestion intégrée de l'énergie intégrée, stockage intermédiaire de l'énergie de freinage.

Tous ces éléments vous garantiront :


- ✓ un rendement maximum
- ✓ une disponibilité maximum du système
- ✓ une grande sécurisation de votre production



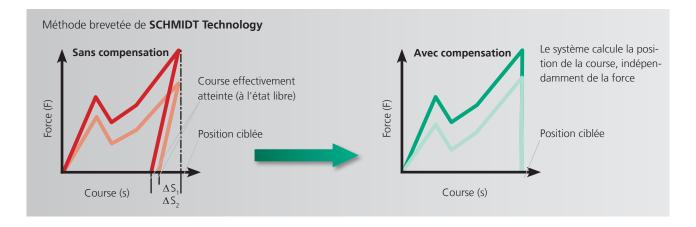

Modules Avec des forces allant de 20 kN à 100 kN


Type de presse		TorquePress 520	TorquePress 560
Force F max.	kN	20	100
Force F en permanence ²⁾	kN	10	50
Course du coulisseau	mm	250	300
Résolution commande d'entraînement	μm	< 1	< 1
Vitesse du coulisseau (max.)	mm/s	0 – 260	0 – 200
Résolution acquisition des don- nées de process – force	N/inc	6,25	30
Résolution acquisition des don- nées de process – course	μm	4	4,6
Protection contre les surcharges		électronique	mécaniques
Entraînement		vis à billes	vis à rouleaux planétaire
Poids	kg	95	230
Poids de l'outil (max.)	kg	25	100
Alimentation (50-60 Hz)	V AC	400 - 480, 3~ / 16 A	400 - 480 V 3~ / 32 A
Hauteur resp. longueu H / B / T	mm	1132 / 163 / 315	1438 / 304 / 255
Coulisseau taraudage	mm	ø 20 ^{H7}	ø 20 ^{H7}
Dimension du coulisseau	mm	ø 50 ^{H6}	ø 60 ^{H6}

			<u> </u>	
Bâti			TorquePress 520	TorquePress 560
Profondeur du col de cygne	С	mm	160	160
Alésage table D		mm	ø 40 ^{H7}	ø 40 ^{H7}
Hauteur de travail	F	mm	340	420
Hauteur de table	K	mm	132	180
Dimension table	BxT	mm	300 x 230	370 x 230
Encombrement	SL 6	mm	530	620
Hauteur de bâti	SH 1	mm	670	880
Hauteur	SH 2	mm	1662	2098
Poids		kg	222	584
Boîtier				
	А	mm	1154,5	1467,5
	В	mm	567,5	621
	С	mm	132	183
	D	mm	300	370
	Е	mm	510	633
	SH1	mm	670	880
	SH2	mm	1662	2098
	SL6	mm	530	620
	F	mm	340	420
Bride				
	G	mm	30	39
	Н	mm	160	215
	J	mm	140 ±0,1	194 ±0,1
	K	mm	78 ±0,1	150 ±0,1
	М	ø mm	100 ^{h7}	80 ^{h7}
	0	mm	6	6
	AA		M10	M14
Coulisseau				
	Р	ø mm	50 ^{H6}	60 ^{H6}
	Q	ø mm	20 ^{H7}	20 ^{H7}
	R	mm	50	50
	S		M10	M10
	Т	mm	20	20
	U	mm	60	60
	V	mm	SW41	-
	W	mm	15	15
	X	mm	6,04 ±0,01	8,04 ±0,01
	Υ	mm	7,8	10,3

Vous trouverez les données CAO à télécharger sous www.schmidt technology.fr

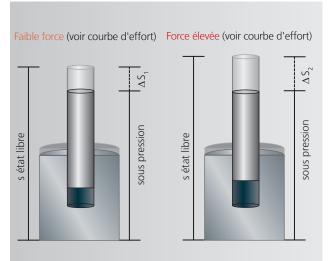
Compensation dynamique de l'élasticité


La réalisation d'un assemblage avec une précision de l'ordre du 1/100ème exige une compensation de l'élasticité. Lors d'un pressage, la pièce, l'outil et la machine se déforment de manière élastique sous l'effet des forces. Lorsqu'il n'y a plus d'effort agissant sur le système, cette déformation disparaît. Cela signifie, qu'à l'état libre, la pièce aura une cote différente de celle à l'état compressé. Pour les applications avec des efforts variables, il ne sera pas possible de réaliser des assemblages précis en travaillant sur butée.

Afin de permettre au système de réaliser une compensation dynamique, il faut d'abord réaliser un cycle de pressage complet pour visualiser la courbe force/course durant la phase de compression

et le retour à l'état libre.

Les systèmes conventionnels arrêtent la visualisation lorsqu'on est en butée, mais le process n'est cependant pas encore terminé, car l'ensemble est encore sous pression.



Les efforts appliqués lors d'opérations d'assemblage varient typiquement de 30 à 40 %. Lors d'un assemblage avec positionnement libre ou avec butée outillage, il est possible de reproduire aisément la course sous effort voulu, mais lorsque la pièce n'est plus sous effort (état libre), on constate de fortes disparités dans l'assemblage. Afin d'éviter cet effet, les systèmes ServoPress/TorquePress SCHMIDT® compensent de manière dynamique les variations de l'effort de pressage. Il en résulte des pièces aux caractéristiques identiques à l'état libre.

- Le système **ServoPress/TorquePress SCHMIDT**® détermine l'élasticité du système de manière simple et précise et procède à une compensation dynamique en temps réel
- C'est uniquement par la fonction de compensation que l'on peut atteindre la position finale avec une précision du 1/100 mm
- Le positionnement libre avec compensation de l'élasticité du système est plus précis qu'un pressage sur butée outil
- La compensation dynamique n'entraîne pas de réduction de la vitesse du process
- La compensation dynamique en association avec d'autres fonctions intelligentes, telles que les tolérances flottantes ont été brevetées

Exemple d'insertion d'une goupille dans une douille

L'élasticité des composant dépend du process d'assemblage et de la géométrie des composants. Cet effet devient significatif dans l'assemblage des composants dont l'élasticité est extrêmement différente. Ceci est clairement illustré dans l'exemple ci-contre.

"ΔS" change proportionnellement à la force d'assemblage, c.-à.-d. que les dimensions des composants varient en fonction de la force d'assemblage requise.